- nil: {α σ : Type} → {M : labeledDigraph α σ} → {u : σ} → walkLabeled M u u []
- cons: {α σ : Type} → {M : labeledDigraph α σ} → {u v w : σ} → {a : α} → {x : List α} → (M.Lab a).Adj u v → walkLabeled M v w x → walkLabeled M u w (a :: x)
Instances For
- nil: {α σ : Type} → {M : labeled_digraph' α σ} → {u : σ} → walk_labeled M u u []
- cons: {α σ : Type} → {M : labeled_digraph' α σ} → {u v w : σ} → {a : α} → {x : List α} → M.edge u v a → walk_labeled M v w x → walk_labeled M u w (a :: x)
Instances For
- nil: {α σ : Type} → {M : labeled_digraph' α σ} → {u : σ} → walk M u u
- cons: {α σ : Type} → {M : labeled_digraph' α σ} → {u v w : σ} → (∃ (a : α), M.edge u v a) → walk M v w → walk M u w
Instances For
noncomputable def
walk_of_walk_labeled
{α : Type}
{σ : Type}
{M : labeled_digraph' α σ}
{u : σ}
{w : σ}
{x : List α}
(wa : walk_labeled M u w x)
:
walk M u w
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
Instances For
Equations
- kayleighsequence2 = ⟨[0, 1, 1, 0], kayleighsequence2.proof_2⟩
Instances For
def
kayleighwalk2
(x0 : Fin 2)
(x1 : Fin 2)
(x2 : Fin 2)
:
walk_labeled (kayleigh2_digraph ⟨[x0, x1, x2], ⋯⟩) (kayleighsequence2.get 0) (kayleighsequence2.get 3) [x0, x1, x2]
Equations
- kayleighwalk2 x0 x1 x2 = walk_labeled.cons ⋯ (walk_labeled.cons ⋯ (walk_labeled.cons ⋯ walk_labeled.nil))
Instances For
Equations
- no_duplicate_edges' M = ∀ (q1 q2 a b : Fin 2), M.edge q1 q2 a → M.edge q1 q2 b → a = b
Instances For
theorem
kayleigh2_no_duplicates
(x0 : Fin 2)
(x1 : Fin 2)
(x2 : Fin 2)
:
no_duplicate_edges' (kayleigh2_digraph ⟨[x0, x1, x2], ⋯⟩)
theorem
a_nice_case_of_hyde_theorem
(x0 : Fin 2)
(x1 : Fin 2)
(x2 : Fin 2)
:
let M := kayleigh2_digraph ⟨[x0, x1, x2], ⋯⟩;
∃ (w : walk_labeled M 0 0 [x0, x1, x2]),
∀ (y0 y1 y2 : Fin 2) (w' : walk_labeled M 0 0 [y0, y1, y2]), walk_of_walk_labeled w = walk_of_walk_labeled w'