Documentation

Acmoi.Exercise2_3

structure labeled_digraph' (α : Type) (σ : Type) :

A slightly different signature from labeled_digraph in Exercise2_4

  • edge : σσαProp
Instances For
    structure labeledDigraph (α : Type) (σ : Type) :

    An edge-labeled digraph on σ consists of a digraph on σ for each label. M.Lab a).Adj u v means that in M, there is an adjacency from u to v labeled a.

    Instances For
      inductive walkLabeled {α : Type} {σ : Type} (M : labeledDigraph α σ) :
      σσList αType
      Instances For
        inductive walk_labeled {α : Type} {σ : Type} (M : labeled_digraph' α σ) :
        σσList αType
        Instances For
          inductive walk {α : Type} {σ : Type} (M : labeled_digraph' α σ) :
          σσType
          Instances For
            noncomputable def walk_of_walk_labeled {α : Type} {σ : Type} {M : labeled_digraph' α σ} {u : σ} {w : σ} {x : List α} (wa : walk_labeled M u w x) :
            walk M u w
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              • kayleigh2_digraph x = { edge := fun (q1 q2 b : Fin 2) => (q1, q2, b) = (0, 1, x.get 0) (q1, q2, b) = (1, 1, x.get 1) (q1, q2, b) = (1, 0, x.get 2) }
              Instances For
                Equations
                Instances For
                  def kayleighwalk2 (x0 : Fin 2) (x1 : Fin 2) (x2 : Fin 2) :
                  walk_labeled (kayleigh2_digraph [x0, x1, x2], ) (kayleighsequence2.get 0) (kayleighsequence2.get 3) [x0, x1, x2]
                  Equations
                  Instances For
                    Equations
                    Instances For
                      theorem kayleigh2_no_duplicates (x0 : Fin 2) (x1 : Fin 2) (x2 : Fin 2) :
                      no_duplicate_edges' (kayleigh2_digraph [x0, x1, x2], )
                      theorem a_nice_case_of_hyde_theorem (x0 : Fin 2) (x1 : Fin 2) (x2 : Fin 2) :
                      let M := kayleigh2_digraph [x0, x1, x2], ; ∃ (w : walk_labeled M 0 0 [x0, x1, x2]), ∀ (y0 y1 y2 : Fin 2) (w' : walk_labeled M 0 0 [y0, y1, y2]), walk_of_walk_labeled w = walk_of_walk_labeled w'