Documentation
Acmoi
.
Exercise2_1
Search
Google site search
return to top
source
Imports
Init
Mathlib.Tactic.Ring
Imported by
φ
ψ
myφ
decide_diophantine3_1
decide_diophantine3_3
remark_2_15
source
def
φ
:
Prop
Equations
φ
=
∀ (
x
:
Fin
19
) (
y
:
Fin
30
) (
z
:
Fin
35
),
143
*
↑
x
+
91
*
↑
y
+
77
*
↑
z
=
2692
↔
↑
x
=
6
∧
↑
y
=
10
∧
↑
z
=
12
Instances For
source
def
ψ
:
Prop
Equations
ψ
=
∀ (
x
y
z
:
ℕ
),
143
*
x
+
91
*
y
+
77
*
z
=
2692
↔
x
=
6
∧
y
=
10
∧
z
=
12
Instances For
source
instance
myφ
:
Decidable
φ
Equations
myφ
=
decidable_of_iff
(∀ (
x
:
Fin
19
) (
y
:
Fin
30
) (
z
:
Fin
35
),
143
*
↑
x
+
91
*
↑
y
+
77
*
↑
z
=
2692
↔
↑
x
=
6
∧
↑
y
=
10
∧
↑
z
=
12
)
myφ.proof_1
source
theorem
decide_diophantine3_1
{a :
ℕ
}
{b :
ℕ
}
{c :
ℕ
}
{n :
ℕ
}
{x :
ℕ
}
{y :
ℕ
}
{z :
ℕ
}
(h :
a
*
x
+
b
*
y
+
c
*
z
=
n
)
(ha :
0
<
a
)
:
x
<
n
/
a
+
1
source
theorem
decide_diophantine3_3
(a :
ℕ
)
(b :
ℕ
)
(c :
ℕ
)
(n :
ℕ
)
(x :
ℕ
)
(y :
ℕ
)
(z :
ℕ
)
:
a
*
x
+
b
*
y
+
c
*
z
=
n
→
0
<
a
→
0
<
b
→
0
<
c
→
x
<
n
/
a
+
1
∧
y
<
n
/
b
+
1
∧
z
<
n
/
c
+
1
source
instance
remark_2_15
:
Decidable
ψ
Equations
remark_2_15
=
decidable_of_iff
φ
remark_2_15.proof_1