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Chapter 1

Kjos-Hanssen (2010)

Excerpts from the paper The probability distribution as a computational resource for randomness
testing.

1.1 Introduction
The fundamental idea of statistics is that by repeated experiment we can learn the underlying
distribution of the phenomenon under investigation. In this paper we partially quantify the
amount of randomness required to carry out this idea. We first show that ordinary Martin-Löf
randomness with respect to the distribution is sufficient. Somewhat surprisingly, however, the
picture is more complicated when we consider a weaker form of randomness where the tests are
effective, rather than merely effective relative to the distribution. We show that such Hippocratic
randomness actually coincides with ordinary randomness in that the same outcomes are random
for each notion, but the corresponding test concepts do not coincide: while there is a universal
test for ordinary ML-randomness, there is none for Hippocratic ML-randomness.

For concreteness we will focus on the classical Bernoulli experiment, although as the statistical
tools we need are limited to Chebyshev’s inequality and the strong law of large numbers, our
result works also in the general situation of repeated experiments in statistics, where an arbitrary
sequence of independent and identically distributed random variables is studied.

When using randomness as a computational resource, the most convenient underlying prob-
ability distribution may be that of a fair coin. In many cases, fairness of the proverbial coin may
be only approximate. Imagine that an available resource generates randomness with respect to
a distribution for which the probability of heads is 𝑝 ≠ 1/2. It is natural to assume that 𝑝 is not
a computable number if the coin flips are generated with contributions from a physical process
such as the flipping of an actual coin. The non-computability of 𝑝 matters strongly if an infinite
sequence of coin flips is to be performed. In that case, the gold standard of algorithmic random-
ness is Martin-Löf randomness, which essentially guarantees that no algorithm (using arbitrary
resources of time and space) can detect any regularities in the sequence. If 𝑝 is non-computable,
it is possible that 𝑝 may itself be a valuable resource, and so the question arises whether a “truly
random” sequence should look random even to an adversary equipped with the distribution as a
resource. In this article we will show that the question is to some extent moot, as these types of
randomness coincide. On the other hand, while there is a universal test for randomness in one
case, in the other there is not. This article can be seen as a follow-up to Martin-Löf’s paper where
he introduced his notion of algorithmic randomness and proved results for Bernoulli measures
[10].
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It might seem that when testing for randomness, it is essential to have access to the distribu-
tion we are testing randomness for. On the other hand, perhaps if the results of the experiment
are truly random we should be able to use them to discover the distribution for ourselves, and
then once we know the distribution, test the results for randomness. However, if the original
results are not really random, we may “discover” the wrong distribution. We show that there are
tests that can be effectively applied, such that if the results are random then the distribution can
be discovered, and the results will then turn out to be random even to someone who knows the
distribution. While these tests can individually be effectively applied, they cannot be effectively
enumerated as a family. On the other hand, there is a single such test (due to Martin-Löf)
that will reveal whether the results are random for some (Bernoulli) distribution, and another
(introduced in this paper) that if so will reveal that distribution.

In other words, one can effectively determine whether randomness for some distribution
obtains, and if so determine that distribution. There is no need to know the distribution ahead
of time to test for randomness with respect to an unknown distribution. If we suspect that a
sequence is random with respect to a measure given by the value of a parameter (in an effective
family of measures), there is no need to know the value of that parameter, as we can first use
Martin-Löf’s idea to test for randomness with respect to some value of the parameter, and then
use the fundamental idea of statistics to find that parameter. Further effective tests can be
applied to compare that parameter 𝑞 with rational numbers near our target parameter 𝑝, leading
to the conclusion that if all effective tests for randomness with respect to parameter 𝑝 are passed,
then all tests having access to 𝑝 as a resource will also be passed. But we need the distribution
to know which effective tests to apply. Thus we show that randomness testing with respect to
a target distribution 𝑝 can be done by two agents each having limited knowledge: agent 1 has
access to the distribution 𝑝, and agent 2 has access to the data 𝑋. Agent 1 tells agent 2 which
tests to apply to 𝑋.

The more specific point is that the information about the distribution 𝑝 required for random-
ness testing can be encoded in a set of effective randomness tests; and the encoding is intrinsic in
the sense that the ordering of the tests does not matter, and further tests may be added: passing
any collection of tests that include these is enough to guarantee randomness. From a syntactic
point of view, whereas randomness with respect to 𝑝 is naturally a Σ0

2(𝑝) class, our results show
that it is actually an intersection of Σ0

2 classes.
Definition 1. The Bernoulli measure 𝜇𝑝 is defined by the stipulation that for each 𝑛 ∈ 𝜔 =
{0, 1, 2, …},

𝜇𝑝({𝑋 ∶ 𝑋(𝑛) = 1}) = 𝑝 and
𝜇𝑝({𝑋 ∶ 𝑋(𝑛) = 0}) = 1 − 𝑝

and 𝑋(0), 𝑋(1), 𝑋(2), … are mutually independent random variables.
If 𝑋 is a {0, 1}-valued random variable such that ℙ(𝑋 = 1) = 𝑝 then 𝑋 is called a Bernoulli(𝑝)

random variable.
Definition 2. A 𝜇𝑝-ML-randomness test is a sequence {𝑈𝑝

𝑛}𝑛 that is uniformly Σ0
1(𝑝) with

𝜇(𝑈𝑝
𝑛) ≤ 2−𝑛, where 2−𝑛 may be replaced by any computable function that goes to zero effectively.
A 𝜇𝑝-ML-randomness test is Hippocratic if there is a Σ0

1 class 𝑆 ⊆ 2𝜔 × 𝜔 such that 𝑆 =
{(𝑋, 𝑛) ∶ 𝑋 ∈ 𝑈𝑝

𝑛}. Thus, 𝑈𝑛 = 𝑈𝑝
𝑛 does not depend on 𝑝 and is uniformly Σ0

1. If 𝑋 passes all
𝜇𝑝-randomness tests then 𝑋 is 𝜇𝑝-random. If 𝑋 passes all Hippocratic tests then 𝑋 is Hippocrates
𝜇-random.

To explain the terminology: like the ancient medic Hippocrates we are not consulting the
oracle of Delphi (𝑝) but rather looking for “natural causes”. This level of randomness recently
arose in the study of randomness extraction from subsets of random sets [8].
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We will often write “𝜇𝑝-random” instead of “𝜇𝑝-ML-random”, as we work in the Martin-Löf
mode of randomness throughout, except when discussing a conjecture at the end of this paper.

1.2 Chebyshev’s inequality
We develop this basic inequality from scratch here, in order to emphasize how generally it holds.
For an event 𝐴 in a probability space, we let 1𝐴, the indicator function of 𝐴, equal 1 if 𝐴 occurs,
and 0 otherwise. The expectation of a discrete random variable 𝑋 is

𝔼(𝑋) = ∑
𝑥

𝑥 ⋅ ℙ(𝑋 = 𝑥).

where ℙ denotes probability and the sum is over all outcomes in the sample space. Thus 𝔼(𝑋)
is the average value of 𝑋 over repeated experiments. It is immediate that

𝔼(1𝐴) = ℙ(𝐴).
Next we observe that the random variable that is equal to 𝑎 when a nonnegative random variable
𝑋 satisfies 𝑋 ≥ 𝑎 and 0 otherwise, is always dominated by 𝑋. That is,

𝑎 ⋅ 1{𝑋≥𝑎} ≤ 𝑋.
Therefore, taking expectations of both sides,

𝑎 ⋅ ℙ{𝑋 ≥ 𝑎} ≤ 𝔼(𝑋).
In particular, for any random variable 𝑋 with 𝔼(𝑋) = 𝜇 ∈ ℝ we have

𝑎2 ⋅ ℙ{(𝑋 − 𝜇)2 ≥ 𝑎2} ≤ 𝔼((𝑋 − 𝜇)2) =∶ 𝜎2

so
ℙ{|𝑋 − 𝜇| ≥ |𝑎|} ≤ 𝜎2/𝑎2

If we let 𝑘 ∈ 𝜔 and replace 𝑎 by 𝑘𝜎, then
ℙ{|𝑋 − 𝜇| ≥ 𝑘𝜎} ≤ 𝜎2/(𝑘𝜎)2 = 1/𝑘2.

This is Chebyshev’s inequality, which in words says that the probability that we exceed the mean
𝜇 by 𝑘 many standard deviations 𝜎 is rather small.

1.3 Results for ordinary randomness
We first prove a version of the phenomenon that for samples of sufficiently fast growing size, the
sample averages almost surely converge quickly to the mean.

Proposition 3. Consider a sequence 𝑌 = {𝑌𝑛}𝑛∈𝜔 of independent Bernoulli(𝑝) random vari-
ables, with the sample average

𝑌 𝑛 ∶= 1
𝑛

𝑛−1
∑
𝑖=0

𝑌𝑖.

Let 𝑁(𝑏) = 23𝑏−1 and let
𝑈𝑑 = ⋃

𝑏≥𝑑
{𝑌 ∶ |𝑌 𝑁(𝑏) − 𝑝| ≥ 2−𝑏}.

Then 𝑈𝑑 is uniformly Σ0
1(𝑝), and 𝜇𝑝(𝑈𝑑) ≤ 2−𝑑, i.e., {𝑈𝑑}𝑑∈𝜔 is a 𝜇𝑝-ML-test.
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The idea of the proof is to use Chebyshev’s inequality and the fact that the variance of a
Bernoulli(𝑝) random variable is bounded (in fact, bounded by 1/4).
Proof. The fact that 𝑈𝑑 is Σ0

1(𝑝) is immediate, so we prove the bound on its 𝜇𝑝-measure. We
have

𝔼(𝑌 𝑛) = 𝑝 and 𝜎2(𝑌 𝑛) = 𝜎2/𝑛
where 𝜎2 = 𝑝(1 − 𝑝) ≤ 1/4 is the variance of 𝑌0 and 𝜎2(𝑌 𝑛) denotes the variance of 𝑌 𝑛. Thus
𝜎 ≤ 1/2, and

ℙ {|𝑌 𝑛 − 𝑝| ≥ 𝑘 ⋅ 𝜎(𝑌 𝑛)} ≤ 1/𝑘2,
so

ℙ {|𝑌 𝑛 − 𝑝| ≥ 𝑘
2√𝑛} ≤ ℙ {|𝑌 𝑛 − 𝑝| ≥ 𝑘 ⋅ 𝜎√𝑛 } ≤ 1/𝑘2 =∶ 2−(𝑏+1).

Now, we claim that 2−𝑏 ≥ 𝑘
2√𝑛 by taking 𝑛 large enough as a function of 𝑏:

𝑛 ≥ 𝑘24𝑏−1 = 2𝑏+14𝑏−1 = 23𝑏−1.

Thus, if 𝑛 ≥ 𝑁(𝑏) ∶= 23𝑏−1,
ℙ {|𝑌 𝑛 − 𝑝| ≥ 2−𝑏} ≤ 2−(𝑏+1)

so
ℙ {∃𝑏 ≥ 𝑑 |𝑌 𝑁(𝑏) − 𝑝| ≥ 2−𝑏} ≤ ∑

𝑏≥𝑑
2−(𝑏+1) = 2−𝑑.

The following result in a sense encapsulates the essence of statistics.

Theorem 4. If 𝑌 is 𝜇𝑝-ML-random then 𝑌 Turing computes 𝑝.

Proof. We may assume 𝑝 is not computable, else there is nothing to prove; in particular we may
assume 𝑝 is not a dyadic rational.

Let {𝑈𝑑}𝑑∈𝜔 be as in Proposition 3. Since 𝑌 is 𝜇𝑝-random, 𝑌 ∉ ∩𝑑𝑈𝑑, so fix 𝑑 with 𝑌 ∉ 𝑈𝑑.
Then for all 𝑏 ≥ 𝑑, we have

|𝑌 𝑁(𝑏) − 𝑝| < 2−𝑏 (*)

where 𝑁(𝑏) = 23𝑏−1.
If the real number 𝑝 is represented as a member of 2𝜔 via

𝑝 = ∑
𝑛∈𝜔

𝑝𝑛2−𝑛−1 = .𝑝0𝑝1𝑝2 ⋯

in binary notation, then we have to define a Turing functional Ψ𝑑 such that 𝑝𝑛 = Ψ𝑌
𝑑 (𝑛).

We pick 𝑏 ≥ 𝑛 + 1 such that 𝑌 𝑁(𝑏) = .𝑦0 ⋯ 𝑦𝑛 ⋯ is not of either of the forms

.𝑦0 ⋯ 𝑦𝑛 1𝑏−(𝑛+1) ⋯

.𝑦0 ⋯ 𝑦𝑛 0𝑏−(𝑛+1) ⋯
where as usual 1𝑘 denotes a string of 𝑘 ones. Since 𝑝 is not a dyadic rational, such a 𝑏 exists.
Then by (*) it must be that the bits 𝑦0 ⋯ 𝑦𝑛 are the first 𝑛 + 1 bits of 𝑝. In particular, 𝑦𝑛 = 𝑝𝑛.
So we let Ψ𝑌

𝑑 (𝑛) = 𝑦𝑛.
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1.4 Hippocratic results
In the last section we made it too easy for ourselves; now we will obtain the same results assuming
only Hippocratic randomness.

Theorem 5. There is a Hippocratic 𝜇𝑝-test such that if 𝑌 passes this test then 𝑌 computes an
accumulation point 𝑞 of the sequence of sample averages

{𝑌 𝑛}𝑛∈𝜔.

Proof. The point is that the usual proof that each convergent sequence is Cauchy gives a Σ0
1

class that has small 𝜇𝑝-measure for all 𝑝 simultaneously. Namely, let

𝑉𝑑 ∶= {𝑌 ∶ ∃𝑎, 𝑏 ≥ 𝑑 |𝑌 𝑁(𝑎) − 𝑌 𝑁(𝑏)| ≥ 2−𝑎 + 2−𝑏}.

Then {𝑉𝑑}𝑑∈𝜔 is uniformly Σ0
1. Recall from Proposition 3 that we defined

𝑈𝑝
𝑑 = {𝑌 ∶ ∃𝑏 ≥ 𝑑 |𝑌 𝑁(𝑏) − 𝑝| ≥ 2−𝑏}.

If there is a 𝑝 such that |𝑌 𝑁(𝑏) − 𝑝| < 2−𝑏 for all 𝑏 ≥ 𝑑, then

|𝑌 𝑁(𝑎) − 𝑌 𝑁(𝑏)| ≤ |𝑌 𝑁(𝑎) − 𝑝| + |𝑝 − 𝑌 𝑁(𝑏)| < 2−𝑎 + 2−𝑏

for all 𝑎, 𝑏 ≥ 𝑑; thus we have
𝑉𝑑 ⊆ ∩𝑝𝑈𝑝

𝑑

and therefore
𝜇𝑝(𝑉𝑑) ≤ 𝜇𝑝(𝑈𝑝

𝑑 ) ≤ 2−𝑑

for all 𝑝. Thus if 𝑌 is Hippocrates 𝜇𝑝-random then 𝑌 ∉ 𝑉𝑑 for some 𝑑.
We next note that for any numbers 𝑐 > 𝑏,

|𝑌 𝑁(𝑏) − 𝑌 𝑁(𝑐)| < 2−𝑏 + 2−𝑐 < 2−(𝑏−1),

so {𝑌 𝑁(𝑐)}𝑐≥𝑑 will remain within 2−(𝑏−1) of 𝑌 𝑁(𝑏) for all 𝑐 > 𝑏. That is, {𝑌 𝑁(𝑛)}𝑛≥𝑑 is a Cauchy
sequence (for each 𝑏 there is an 𝑁(𝑏) such that for all 𝑛, 𝑚 ≥ 𝑁(𝑏), |𝑌 𝑛 − 𝑌 𝑚| ≤ 2−𝑏) hence
𝑞 ∶= lim𝑛 𝑌 𝑁(𝑛) exists. Write 𝑞 = .𝑞0𝑞1𝑞2 ⋯. Then

|𝑌 𝑁(𝑏) − 𝑞| < 2−(𝑏−1), so

|𝑌 𝑁(𝑏+1) − 𝑞| < 2−𝑏;
if we define Θ𝑑 as Ψ𝑑 in Theorem 4 except with 𝑁(⋅) replaced by 𝑁(⋅ + 1), then

𝑞𝑛 = Θ𝑌
𝑑 (𝑛).

and so 𝑌 computes 𝑞 using the Turing reduction Θ𝑑.

To argue that the accumulation point 𝑞 of Theorem 5 is actually equal to 𝑝 under the weak
assumption of Hippocratic randomness, we need:
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An analysis of the strong law of large numbers. Let {𝑋𝑛}𝑛∈𝜔 be independent and iden-
tically distributed random variables with mean 0, and let 𝑆𝑛 = ∑𝑛

𝑖=0 𝑋𝑖. Then 𝑆4
𝑛 will be a

linear combination (with binomial coefficients as coefficients) of the terms

∑
𝑖

𝑋4
𝑖 , ∑

𝑖<𝑗
𝑋3

𝑖 𝑋𝑗, ∑
𝑖<𝑗<𝑘

𝑋2
𝑖 𝑋𝑗𝑋𝑘, ∑

𝑖<𝑗<𝑘<ℓ
𝑋𝑖𝑋𝑗𝑋𝑘𝑋ℓ, and ∑

𝑖<𝑗
𝑋2

𝑖 𝑋2
𝑗 .

Since 𝔼(𝑋𝑖) = 0, and 𝔼(𝑋𝑎
𝑖 𝑋𝑏

𝑗 ) = 𝔼(𝑋𝑎
𝑖 )𝔼(𝑋𝑏

𝑗 ) by independence, and each 𝑋𝑖 is identically
distributed with 𝑋1 and 𝑋2, we get

𝔼(𝑆4
𝑛) = 𝑛 𝔼(𝑋4

1) + (𝑛
2)(4

2) 𝔼(𝑋2
1𝑋2

2)

= 𝑛 𝔼(𝑋4
1) + (𝑛

2)(4
2) 𝔼(𝑋2

1)𝔼(𝑋2
2) = 𝑛 𝔼(𝑋4

1) + (𝑛
2)(4

2) 𝔼(𝑋2
1)2.

Since 0 ≤ 𝜎2(𝑋2
1) = 𝔼(𝑋4

1) − 𝔼(𝑋2
1)2, this is (writing 𝐾 ∶= 𝔼(𝑋4

1))

≤ 𝑛 𝔼(𝑋4
1) + (𝑛

2)(4
2) 𝔼(𝑋4

1) = (𝑛 + 3𝑛(𝑛 − 1))𝔼(𝑋4
1) = (3𝑛2 − 2𝑛)𝐾

so 𝔼(𝑆4
𝑛/𝑛4) ≤ 3𝐾

𝑛2 . Now
𝑆4

𝑛/𝑛4 ≥ 𝑎4 ⋅ 1{𝑆4𝑛/𝑛4≥𝑎4}
surely, so (as in the proof of Chebyshev’s inequality)

𝔼(𝑆4
𝑛/𝑛4) ≥ 𝑎4 ⋅ 𝔼(1{𝑆4𝑛/𝑛4≥𝑎4}) = 𝑎4 ⋅ ℙ(𝑆4

𝑛/𝑛4 ≥ 𝑎4)
giving

ℙ(𝑋𝑛 = 𝑆𝑛/𝑛 ≥ 𝑎) ≤ 3𝐾
𝑛2𝑎4

We now applying this to 𝑋𝑛 = 𝑌𝑛 − 𝔼(𝑌𝑛) = 𝑌𝑛 − 𝑝 (so that 𝐾 = 𝐾𝑝). Note that (writing
𝑝 = 1 − 𝑝)

𝐾𝑝 = 𝔼[(𝑌1 − 𝑝)4] = (1 − 𝑝)4 ⋅ 𝑝 + 𝑝4 ⋅ 𝑝 = 𝑝𝑝(𝑝3 + 𝑝3) ≤ 1
4 ⋅ 2 = 1

2,

so ℙ(∃𝑛 ≥ 𝑁 |𝑌 𝑛 − 𝑝| ≥ 𝑎) is bounded by

∑
𝑛≥𝑁

3𝐾𝑝
𝑛2𝑎4 ≤ 3

2𝑎4 ∑
𝑛≥𝑁

1
𝑛2 ≤ 3

2𝑎4 ∫
∞

𝑁−1

1
𝑥2 𝑑𝑥 = 3

2𝑎4(𝑁 − 1) .

This bound suffices to obtain our desired result:

Theorem 6. If 𝑌 is Hippocrates 𝜇𝑝-random then 𝑌 satisfies the Strong Law of Large Numbers
for 𝑝.

Proof. Let 𝑞1, 𝑞2 be rational numbers with 𝑞1 < 𝑝 < 𝑞2. Let

𝑊𝑁 ∶= {𝑌 ∶ ∃𝑛 ≥ 𝑁 𝑌 𝑛 ≤ 𝑞1} ∪ {𝑌 ∶ ∃𝑛 ≥ 𝑁 𝑌 𝑛 ≥ 𝑞2}
Then {𝑊𝑁}𝑁∈𝜔 is uniformly Σ0

1, and 𝜇𝑝𝑊𝑁 → 0 effectively:

𝜇𝑝{𝑌 ∶ ∃𝑛 ≥ 𝑁 𝑌 𝑛 ≤ 𝑞1} ≤ 3
2(𝑝 − 𝑞1)4(𝑁 − 1)

Thus if 𝑌 is Hippocrates 𝜇𝑝-random then 𝑌 ∉ ∩𝑛𝑊𝑛, i.e., 𝑌 𝑛 is eventually always in the interval
(𝑞1, 𝑞2).
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Corollary 7. If 𝑌 is Hippocrates 𝜇𝑝-random then 𝑌 Turing computes 𝑝.

Proof. By Theorem 5, 𝑌 computes the limit of a subsequence {𝑌 𝑁(𝑏)}𝑏∈𝜔. By Theorem 6, this
limit must be 𝑝.

Note that the randomness test in Theorem 6 depends on the pair (𝑞1, 𝑞2), so we actually
needed infinitely many tests to guarantee that 𝑌 computes 𝑝. This is no coincidence. Let
𝑌 ≥𝑇 𝑝 abbreviate the statement that 𝑌 Turing computes 𝑝, i.e., 𝑝 is Turing reducible to 𝑌 .

Theorem 8. For all 𝑝, if there is a Hippocratic 𝜇𝑝-test {𝑈𝑛}𝑛∈𝜔 such that {𝑋 ∶ 𝑋 ≱𝑇 𝑝} ⊆ ∩𝑛𝑈𝑛,
then 𝑝 is computable.

Proof. Let {𝑈𝑛}𝑛∈𝜔 be such a test. By standard computability theoretic basis theorems, the
complement 𝑈𝑐

1 has a low member 𝑋1 and a hyperimmune-free member 𝑋2. By assumption
𝑋1 ≥𝑇 𝑝 and 𝑋2 ≥𝑇 𝑝, so 𝑝 is both low and hyperimmune-free, hence by another basic result of
computability theory [?], 𝑝 is computable.

Corollary 9. There is no universal Hippocratic 𝜇𝑝-test, unless 𝑝 is computable.

Proof. If there is such a test then by Corollary 7 there is a test {𝑈𝑛}𝑛∈𝜔 as in the hypothesis of
Theorem 8, whence 𝑝 is computable.
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Chapter 2

Ahlman & Koponen (2015)

Definition 10. Let 𝑘 ∈ ℕ. An automorphisms of ℤ/𝑘ℤ is a bijection 𝑓 that preserves addition:

𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦)

Definition 11. The additive structure ℤ/𝑘ℤ is rigid if it has no nontrivial automorphisms.

Theorem 12. The additive structure ℤ/2ℤ is rigid.

Proof. Otherwise 𝑓(0) = 1 and 𝑓(1) = 0, but then

0 = 𝑓(1) = 𝑓(1 + 0) = 𝑓(1) + 𝑓(0) = 0 + 1 = 1.

[]
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