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This project contains excerpt from the paper Interpolating between the Jaccard distance and
an analogue of the normalized information distance. That paper is unique in that a majority of
the results were formalized at the time of publication. Therefore it is especially suitable for a
Lean blueprint project.

Abstract. Jiménez, Becerra, and Gelbukh (2013) defined a family of “symmetric Tversky ratio
models” 𝑆𝛼,𝛽, 0 ≤ 𝛼 ≤ 1, 𝛽 > 0. Each function 𝐷𝛼,𝛽 = 1 − 𝑆𝛼,𝛽 is a semimetric on the powerset
of a given finite set.

We show that 𝐷𝛼,𝛽 is a metric if and only if 0 ≤ 𝛼 ≤ 1
2 and 𝛽 ≥ 1/(1 − 𝛼). This result is

formally verified in the Lean proof assistant.
The extreme points of this parametrized space of metrics are 𝒱1 = 𝐷1/2,2, the Jaccard

distance, and 𝒱∞ = 𝐷0,1, an analogue of the normalized information distance of M. Li, Chen,
X. Li, Ma, and Vitányi (2004).

As a second interpolation, in general we also show that 𝒱𝑝 is a metric, 1 ≤ 𝑝 ≤ ∞, where

Δ𝑝(𝐴, 𝐵) = (|𝐵 ∖ 𝐴|𝑝 + |𝐴 ∖ 𝐵|𝑝)1/𝑝,

𝒱𝑝(𝐴, 𝐵) = Δ𝑝(𝐴, 𝐵)
|𝐴 ∩ 𝐵| + Δ𝑝(𝐴, 𝐵) .

0.1 Introduction
Distance measures (metrics), are used in a wide variety of scientific contexts. In bioinformatics,
M. Li, Badger, Chen, Kwong, and Kearney [13] introduced an information-based sequence dis-
tance. In an information-theoretical setting, M. Li, Chen, X. Li, Ma and Vitányi [14] rejected
the distance of [13] in favor of a normalized information distance (NID). The Encyclopedia of
Distances [3] describes the NID on page 205 out of 583, as

max{𝐾(𝑥 ∣ 𝑦∗), 𝐾(𝑦 ∣ 𝑥∗)}
max{𝐾(𝑥), 𝐾(𝑦)}

where 𝐾(𝑥 ∣ 𝑦∗) is the Kolmogorov complexity of 𝑥 given a shortest program 𝑦∗ to compute 𝑦.
It is equivalent to be given 𝑦 itself in hard-coded form:

max{𝐾(𝑥 ∣ 𝑦), 𝐾(𝑦 ∣ 𝑥)}
max{𝐾(𝑥), 𝐾(𝑦)}

Another formulation (see [14, page 8]) is

𝐾(𝑥, 𝑦) − min{𝐾(𝑥), 𝐾(𝑦)}
max{𝐾(𝑥), 𝐾(𝑦)} .

The fact that the NID is in a sense a normalized metric is proved in [14]. Then in 2017,
while studying malware detection, Raff and Nicholas [15] suggested Lempel–Ziv Jaccard distance
(LZJD) as a practical alternative to NID. As we shall see, this is a metric. In a way this constitutes
a full circle: the distance in [13] is itself essentially a Jaccard distance, and the LZJD is related
to it as Lempel–Ziv complexity is to Kolmogorov complexity. In the present paper we aim to
shed light on this back-and-forth by showing that the NID and Jaccard distances constitute the
endpoints of a parametrized family of metrics.
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Reference Jaccard notation NID notation
[13] 𝑑
[14] 𝑑𝑠 𝑑
[10] 𝐷 𝐷′

[15] LZJD NCD

Table 1: Overview of notation used in the literature. (It seems that authors use simple names
for their favored notions.)

For comparison, the Jaccard distance between two sets 𝑋 and 𝑌 , and our analogue of the
NID, are as follows:

𝐽1(𝑋, 𝑌 ) = |𝑋 ∖ 𝑌 | + |𝑌 ∖ 𝑋|
|𝑋 ∪ 𝑌 | = 1 − |𝑋 ∩ 𝑌 |

|𝑋 ∪ 𝑌 | (1)

𝐽∞(𝑋, 𝑌 ) = max{|𝑋 ∖ 𝑌 |, |𝑌 ∖ 𝑋|}
max{|𝑋|, |𝑌 |} (2)

Our main result Theorem 20 shows which interpolations between these two are metrics. The
way we arrived at 𝐽∞ as an analogue of NID is via Lempel–Ziv complexity. While there are
several variants [12, 19, 20], the LZ 1978 complexity [20] of a sequence is the cardinality of a
certain set, the dictionary.
Definition 1. Let LZSet(𝐴) be the Lempel–Ziv dictionary for a sequence 𝐴. We define LZ–
Jaccard distance LZJD by

LZJD(𝐴, 𝐵) = 1 − |LZSet(𝐴) ∩ LZSet(𝐵)|
|LZSet(𝐴) ∪ LZSet(𝐵)| .

It is shown in [13, Theorem 1] that the triangle inequality holds for a function which they call
an information-based sequence distance. Later papers give it the notation 𝑑𝑠 in [14, Definition
V.1], and call their normalized information distance 𝑑. Raff and Nicholas [15] introduced the
LZJD and did not discuss the appearance of 𝑑𝑠 in [14, Definition V.1], even though they do cite
[14] (but not [13]).

Kraskov et al. [11, 10] use 𝐷 and 𝐷′ for continuous analogues of 𝑑𝑠 and 𝑑 in [14] (which they
cite). The Encyclopedia calls it the normalized information metric,

𝐻(𝑋 ∣ 𝑌 ) + 𝐻(𝑋 ∣ 𝑌 )
𝐻(𝑋, 𝑌 ) = 1 − 𝐼(𝑋; 𝑌 )

𝐻(𝑋, 𝑌 )
or Rajski distance [16].

This 𝑑𝑠 was called 𝑑 by [13] — see Table 1. Conversely, [14, near Definition V.1] mentions
mutual information.
Remark 2. Ridgway [4] observed that the entropy-based distance 𝐷 is essentially a Jaccard
distance. No explanation was given, but we attempt one as follows. Suppose 𝑋1, 𝑋2, 𝑋3, 𝑋4
are iid Bernoulli(𝑝 = 1/2) random variables, 𝑌 is the random vector (𝑋1, 𝑋2, 𝑋3) and 𝑍 is
(𝑋2, 𝑋3, 𝑋4). Then 𝑌 and 𝑍 have two bits of mutual information 𝐼(𝑌 , 𝑍) = 2. They have an
entropy 𝐻(𝑌 ) = 𝐻(𝑍) = 3 of three bits. Thus the relationship 𝐻(𝑌 , 𝑍) = 𝐻(𝑌 )+𝐻(𝑍)−𝐼(𝑌 , 𝑍)
becomes a Venn diagram relationship |{𝑋1, 𝑋2, 𝑋3, 𝑋4}| = |{𝑋1, 𝑋2, 𝑋3}| + |{𝑋2, 𝑋3, 𝑋4}| −
|{𝑋2, 𝑋3}|. The relationship to Jaccard distance may not have been well known, as it is not
mentioned in [10, 2, 13, 1].

A more general setting is that of STRM (Symmetric Tversky Ratio Models), Definition 17.
These are variants of the Tversky index (Definition 14) proposed in [7].

2



0.1.1 Generalities about metrics
Definition 3. Let 𝒳 be a set. A metric on 𝒳 is a function 𝑑 ∶ 𝒳 × 𝒳 → ℝ such that

1. 𝑑(𝑥, 𝑦) ≥ 0,

2. 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦,

3. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) (symmetry),

4. 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) (the triangle inequality)

for all 𝑥, 𝑦, 𝑧 ∈ 𝒳. If 𝑑 satisfies Item 1, Item 2, Item 3 but not necessarily Item 4 then 𝑑 is called
a semimetric.

A basic exercise in Definition 3 that we will make use of is Theorem 4.

Theorem 4. If 𝑑1 and 𝑑2 are metrics and 𝑎, 𝑏 are nonnegative constants, not both zero, then
𝑎𝑑1 + 𝑏𝑑2 is a metric.

Proof. Item 1 is immediate from Item 1 for 𝑑1 and 𝑑2.
Item 2: Assume 𝑎𝑑1(𝑥, 𝑦) + 𝑏𝑑2(𝑥, 𝑦) = 0. Then 𝑎𝑑1(𝑥, 𝑦) = 0 and 𝑏𝑑2(𝑥, 𝑦) = 0. Since 𝑎, 𝑏

are not both 0, we may assume 𝑎 > 0. Then 𝑑1(𝑥, 𝑦) = 0 and hence 𝑥 = 𝑦 by Item 2 for 𝑑1.
Item 3: We have 𝑎𝑑1(𝑥, 𝑦) + 𝑏𝑑2(𝑥, 𝑦) = 𝑎𝑑1(𝑦, 𝑥) + 𝑏𝑑2(𝑦, 𝑥) by Item 3 for 𝑑1 and 𝑑2.
Item 4: By Item 4 for 𝑑1 and 𝑑2 we have

𝑎𝑑1(𝑥, 𝑦) + 𝑏𝑑2(𝑥, 𝑦) ≤ 𝑎(𝑑1(𝑥, 𝑧) + 𝑑1(𝑧, 𝑦)) + 𝑏(𝑑2(𝑥, 𝑧) + 𝑑2(𝑧, 𝑦))
= (𝑎𝑑1(𝑥, 𝑧) + 𝑏𝑑2(𝑥, 𝑧)) + (𝑎𝑑2(𝑧, 𝑦) + 𝑏𝑑2(𝑧, 𝑦)).

Lemma 5. Let 𝑑(𝑥, 𝑦) be a metric and let 𝑎(𝑥, 𝑦) be a nonnegative symmetric function. If
𝑎(𝑥, 𝑧) ≤ 𝑎(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧, then 𝑑′(𝑥, 𝑦) = 𝑑(𝑥,𝑦)

𝑎(𝑥,𝑦)+𝑑(𝑥,𝑦) , with 𝑑′(𝑥, 𝑦) = 0 if 𝑑(𝑥, 𝑦) =
0, is a metric.

Proof. As a piece of notation, let us write 𝑑𝑥𝑦 = 𝑑(𝑥, 𝑦) and 𝑎𝑥𝑦 = 𝑎(𝑥, 𝑦). As observated by
[17], in order to show

𝑑𝑥𝑦
𝑎𝑥𝑦 + 𝑑𝑥𝑦

≤ 𝑑𝑥𝑧
𝑎𝑥𝑧 + 𝑑𝑥𝑧

+ 𝑑𝑦𝑧
𝑎𝑦𝑧 + 𝑑𝑦𝑧

,

it suffices to show the following pair of inequalities:

𝑑𝑥𝑦
𝑎𝑥𝑦 + 𝑑𝑥𝑦

≤ 𝑑𝑥𝑧+𝑑𝑦𝑧
𝑎𝑥𝑦+𝑑𝑥𝑧+𝑑𝑦𝑧

(3)

𝑑𝑥𝑧+𝑑𝑦𝑧
𝑎𝑥𝑦+𝑑𝑥𝑧+𝑑𝑦𝑧

≤ 𝑑𝑥𝑧
𝑎𝑥𝑧 + 𝑑𝑥𝑧

+ 𝑑𝑦𝑧
𝑎𝑦𝑧 + 𝑑𝑦𝑧

(4)

Here (3) follows from 𝑑 being a metric, i.e., 𝑑𝑥𝑦 ≤ 𝑑𝑥𝑧 + 𝑑𝑦𝑧, since

𝑐 ≥ 0 < 𝑎 ≤ 𝑏 ⟹ 𝑎
𝑎 + 𝑐 ≤ 𝑏

𝑏 + 𝑐 .

Next, (4) would follow from 𝑎𝑥𝑦 + 𝑑𝑦𝑧 ≥ 𝑎𝑥𝑧 and 𝑎𝑥𝑦 + 𝑑𝑥𝑧 ≥ 𝑎𝑦𝑧. By symmetry between 𝑥
and 𝑦 and since 𝑎𝑥𝑦 = 𝑎𝑦𝑥 by assumption, it suffices to prove the first of these, 𝑎𝑥𝑦 + 𝑑𝑦𝑧 ≥ 𝑎𝑥𝑧,
which holds by assumption.
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0.1.2 Metrics on a family of finite sets
Lemma 6. For sets 𝐴, 𝐵, 𝐶, we have |𝐴 ∖ 𝐵| ≤ |𝐴 ∖ 𝐶| + |𝐶 ∖ 𝐵|.
Proof. We have 𝐴 ∖ 𝐵 ⊆ (𝐴 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵). Therefore, the result follows from the union bound
for cardinality.

Lemma 7. Let 𝑓(𝐴, 𝐵) = |𝐴 ∖ 𝐵| + |𝐵 ∖ 𝐴|. Then 𝑓 is a metric.

Proof. The most nontrivial part is to prove the triangle inequality,

|𝐴 ∖ 𝐵| + |𝐵 ∖ 𝐴| ≤ |𝐴 ∖ 𝐶| + |𝐶 ∖ 𝐴| + |𝐶 ∖ 𝐵| + |𝐵 ∖ 𝐶|.

By the “rotation identity” |𝐴 ∖ 𝐶| + |𝐶 ∖ 𝐵| + |𝐵 ∖ 𝐴| = |𝐴 ∖ 𝐵| + |𝐵 ∖ 𝐶| + |𝐶 ∖ 𝐴|, this is
equivalent to

2(|𝐴 ∖ 𝐵| + |𝐵 ∖ 𝐴|) ≤ 2(|𝐴 ∖ 𝐶| + |𝐶 ∖ 𝐵| + |𝐵 ∖ 𝐴|),
which is immediate from Lemma 6.

Lemma 8. Let 𝑓(𝐴, 𝐵) = max{|𝐴 ∖ 𝐵|, |𝐵 ∖ 𝐴|}. Then 𝑓 is a metric.

Proof. For the triangle inequality, we need to show

max{|𝐴 ∖ 𝐵|, |𝐵 ∖ 𝐴|} ≤ max{|𝐴 ∖ 𝐶|, |𝐶 ∖ 𝐴|} + max{|𝐶 ∖ 𝐵|, |𝐵 ∖ 𝐶|}.

By symmetry we may assume that max{|𝐴∖𝐵|, |𝐵∖𝐴|} = |𝐴∖𝐵|. Then, the result is immediate
from Lemma 6.

For a real number 𝛼, we write 𝛼 = 1 − 𝛼. For finite sets 𝑋, 𝑌 we define

�̃�(𝑋, 𝑌 ) = min{|𝑋 ∖ 𝑌 |, |𝑌 ∖ 𝑋|},

�̃�(𝑋, 𝑌 ) = max{|𝑋 ∖ 𝑌 |, |𝑌 ∖ 𝑋|}.

Lemma 9. Let 𝛿 ∶= 𝛼�̃� + 𝛼�̃� . Let 𝑋 = {0}, 𝑌 = {1}, 𝑍 = {0, 1}. Then 𝛿(𝑋, 𝑌 ) = 1,
𝛿(𝑋, 𝑍) = 𝛿(𝑌 , 𝑍) = 𝛼.

The proof of Lemma 9 is an immediate calculation.

Theorem 10. 𝛿𝛼 = 𝛼�̃� + 𝛼�̃� satisfies the triangle inequality if and only if 0 ≤ 𝛼 ≤ 1/2.
Proof. We first show the only if direction. By Lemma 9 the triangle inequality only holds for
the example given there if 1 ≤ 2𝛼, i.e., 𝛼 ≤ 1/2.

Now let us show the if direction. If 𝛼 ≤ 1/2 then 𝛼 ≤ 𝛼, so 𝛿𝛼 = 𝛼(�̃� + �̃�) + (𝛼 − 𝛼)�̃� is a
nontrivial nonnegative linear combination. Since (�̃� + �̃�)(𝐴, 𝐵) = |𝐴 ∖ 𝐵| + |𝐵 ∖ 𝐴| (Lemma 7)
and �̃�(𝐴, 𝐵) = max{|𝐴 ∖ 𝐵|, |𝐵 ∖ 𝐴|} (Lemma 8) are both metrics, the result follows from
Theorem 4.

Lemma 11. Suppose 𝑑 is a metric on a collection of nonempty sets 𝒳, with 𝑑(𝑋, 𝑌 ) ≤ 2 for all
𝑋, 𝑌 ∈ 𝒳. Let �̂� = 𝒳 ∪ {∅} and define ̂𝑑 ∶ �̂� × �̂� → ℝ by stipulating that for 𝑋, 𝑌 ∈ 𝒳,

̂𝑑(𝑋, 𝑌 ) = 𝑑(𝑋, 𝑌 ); 𝑑(𝑋, ∅) = 1 = 𝑑(∅, 𝑋); 𝑑(∅, ∅) = 0.

Then ̂𝑑 is a metric on �̂�.
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Theorem 12. Let 𝑓(𝐴, 𝐵) be a metric such that

|𝐵 ∖ 𝐴| ≤ 𝑓(𝐴, 𝐵)

for all 𝐴, 𝐵. Then the function 𝑑 given by

𝑑(𝐴, 𝐵) = {
𝑓(𝐴,𝐵)

|𝐴∩𝐵|+𝑓(𝐴,𝐵) , if |𝐴 ∩ 𝐵| + 𝑓(𝐴, 𝐵) > 0,
0, otherwise,

is a metric.

Proof. By Lemma 5 (with 𝑎𝑥,𝑦 = |𝑋 ∩ 𝑌 |) we only need to verify that for all sets 𝐴, 𝐵, 𝐶,

|𝐴 ∩ 𝐶| + 𝑓(𝐴, 𝐵) ≥ |𝐵 ∩ 𝐶|.

And indeed, since tautologically 𝐵 ∩ 𝐶 ⊆ (𝐵 ∖ 𝐴) ∪ (𝐴 ∩ 𝐶), by the union bound we have
|𝐵 ∩ 𝐶| − |𝐴 ∩ 𝐶| ≤ |𝐵 ∖ 𝐴| ≤ 𝑓(𝐴, 𝐵).
Theorem 13. Let 𝑓(𝐴, 𝐵) = 𝑚 min{|𝐴∖𝐵|, |𝐵∖𝐴|}+𝑀 max{|𝐴∖𝐵|, |𝐵∖𝐴|} with 0 < 𝑚 ≤ 𝑀
and 1 ≤ 𝑀 . Then the function 𝑑 given by

𝑑(𝐴, 𝐵) = {
𝑓(𝐴,𝐵)

|𝐴∩𝐵|+𝑓(𝐴,𝐵) , if 𝐴 ∪ 𝐵 ≠ ∅,
0, otherwise,

is a metric.

Proof. We have 𝑓(𝐴, 𝐵) = (𝑚 + 𝑀)𝛿𝛼(𝐴, 𝐵) where 𝛼 = 𝑚
𝑚+𝑀 . Since 𝑚 ≤ 𝑀 , 𝛼 ≤ 1/2, so 𝑓

satisfies the triangle inequality by Theorem 10. Since 𝑚 > 0, in fact 𝑓 is a metric. Using 𝑀 ≥ 1,

𝑓(𝐴, 𝐵) ≥ 𝑀 max{|𝐴 ∖ 𝐵|, |𝐵 ∖ 𝐴|} ≥ 𝑀|𝐵 ∖ 𝐴| ≥ |𝐵 ∖ 𝐴|,

so that by Theorem 12, 𝑑 is a metric.

0.1.3 Tversky indices
Definition 14 ([18]). For sets 𝑋 and 𝑌 the Tversky index with parameters 𝛼, 𝛽 ≥ 0 is a number
between 0 and 1 given by

𝑆(𝑋, 𝑌 ) = |𝑋 ∩ 𝑌 |
|𝑋 ∩ 𝑌 | + 𝛼|𝑋 ∖ 𝑌 | + 𝛽|𝑌 ∖ 𝑋| .

We also define the corresponding Tversky dissimilarity 𝑑𝑇
𝛼,𝛽 by

𝑑𝑇
𝛼,𝛽(𝑋, 𝑌 ) = {1 − 𝑆(𝑋, 𝑌 ) if 𝑋 ∪ 𝑌 ≠ ∅;

0 if 𝑋 = 𝑌 = ∅.

Definition 15. The Szymkiewicz–-Simpson coefficient is defined by

overlap(𝑋, 𝑌 ) = |𝑋 ∩ 𝑌 |
min(|𝑋|, |𝑌 |)

We may note that overlap(𝑋, 𝑌 ) = 1 whenever 𝑋 ⊆ 𝑌 or 𝑌 ⊆ 𝑋, so that 1 − overlap is not
a metric.
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Definition 16. The Sørensen–Dice coefficient is defined by

2|𝑋 ∩ 𝑌 |
|𝑋| + |𝑌 | .

Definition 17 ([7, Section 2]). Let 𝒳 be a collection of finite sets. We define 𝑆 ∶ 𝒳 × 𝒳 → ℝ
as follows. The symmetric Tversky ratio model is defined by

strm(𝑋, 𝑌 ) = |𝑋 ∩ 𝑌 | + bias
|𝑋 ∩ 𝑌 | + bias + 𝛽 (𝛼�̃� + (1 − 𝛼)�̃�)

The unbiased symmetric TRM (ustrm) is the case where bias = 0, which is the case we
shall assume we are in for the rest of this paper. The Tversky semimetric 𝐷𝛼,𝛽 is defined
by 𝐷𝛼,𝛽(𝑋, 𝑌 ) = 1 − ustrm(𝑋, 𝑌 ), or more precisely

𝐷𝛼,𝛽(𝑋, 𝑌 ) = {𝛽 𝛼�̃�+(1−𝛼)�̃�
|𝑋∩𝑌 |+𝛽(𝛼�̃�+(1−𝛼)�̃�) , if 𝑋 ∪ 𝑌 ≠ ∅;

0 if 𝑋 = 𝑌 = ∅.

Note that for 𝛼 = 1/2, 𝛽 = 1, the STRM is equivalent to the Sørensen–Dice coefficient.
Similarly, for 𝛼 = 1/2, 𝛽 = 2, it is equivalent to Jaccard’s coefficient.

0.2 Tversky metrics
Theorem 18. The function 𝐷𝛼,𝛽 is a metric only if 𝛽 ≥ 1/(1 − 𝛼).
Proof. Recall that with 𝐷 = 𝐷𝛼,𝛽,

𝐷(𝑋, 𝑌 ) = 𝛽𝛿
|𝑋 ∩ 𝑌 | + 𝛽𝛿 .

By Lemma 9, for the example given there we have

𝐷(𝑋, 𝑌 ) = 𝛽 ⋅ 1
0 + 𝛽 ⋅ 1 = 1,

𝐷(𝑋, 𝑍) = 𝐷(𝑌 , 𝑍) = 𝛽 ⋅ 𝛼
1 + 𝛽 ⋅ 𝛼.

The triangle inequality is then equivalent to:

1 ≤ 2 𝛽𝛼
1 + 𝛽𝛼 ⟺ 𝛽𝛼 ≥ 1 ⟺ 𝛽 ≥ 1/(1 − 𝛼).

In Theorem 19 we use the interval notation on ℕ, given by [𝑎, 𝑎] = {𝑎} and [𝑎, 𝑏] = [𝑎, 𝑏 −
1] ∪ {𝑏}.

Theorem 19. The function 𝐷𝛼,𝛽 is a metric on all finite power sets only if 𝛼 ≤ 1/2.
Proof. Suppose 𝛼 > 1/2. Then 2𝛼 < 1. Let 𝑛 be an integer with 𝑛 > 𝛽𝛼

1−2𝛼 . Let 𝑋𝑛 = [0, 𝑛], and
𝑌𝑛 = [1, 𝑛 + 1], and 𝑍𝑛 = [1, 𝑛]. The triangle inequality says

𝛽 1
𝑛 + 𝛽 ⋅ 1 = 𝐷(𝑋𝑛, 𝑌𝑛) ≤ 𝐷(𝑋𝑛, 𝑍𝑛) + 𝐷(𝑍𝑛, 𝑌𝑛) = 2𝛽 𝛼

𝑛 + 𝛽𝛼
𝑛 + 𝛽𝛼 ≤ 2𝛼(𝑛 + 𝛽)

𝑛(1 − 2𝛼) ≤ 𝛽𝛼
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Then the triangle inequality does not hold, so 𝐷𝛼,𝛽 is not a metric on the power set of
[0, 𝑛 + 1].
Theorem 20. Let 0 ≤ 𝛼 ≤ 1 and 𝛽 > 0. Then 𝐷𝛼,𝛽 is a metric if and only if 0 ≤ 𝛼 ≤ 1/2 and
𝛽 ≥ 1/(1 − 𝛼).
Proof. Theorem 18 and Theorem 19 give the necessary condition. Since

𝐷𝛼,𝛽 = {𝛽 𝛼�̃�+(1−𝛼)�̃�
|𝑋∩𝑌 |+𝛽(𝛼�̃�+(1−𝛼)�̃�) , if 𝑋 ∪ 𝑌 ≠ ∅,

0 otherwise,

where �̃� is the minimum of the set differences and �̃� is the maximum, we can let 𝑓(𝐴, 𝐵) =
𝛽(𝛼�̃�(𝐴, 𝐵) + (1 − 𝛼)�̃�(𝐴, 𝐵)). Then with the constants 𝑚 = 𝛽𝛼 and 𝑀 = 𝛽𝛼, we can apply
Theorem 13.

We have formally proved Theorem 20 in the Lean theorem prover. The Github repository
can be found at [8].

0.2.1 A converse to Gragera and Suppakitpaisarn
Theorem 21 (Gragera and Suppakitpaisarn [5, 6]). The optimal constant 𝜌 such that 𝑑𝑇

𝛼,𝛽(𝑋, 𝑌 ) ≤
𝜌(𝑑𝑇

𝛼,𝛽(𝑋, 𝑌 ) + 𝑑𝑇
𝛼,𝛽(𝑌 , 𝑍)) for all 𝑋, 𝑌 , 𝑍 is

1
2 (1 + √ 1

𝛼𝛽 ) .

Corollary 22. 𝑑𝑇
𝛼,𝛽 is a metric only if 𝛼 = 𝛽 ≥ 1.

Proof. Clearly, 𝛼 = 𝛽 is necessary to ensure 𝑑𝑇
𝛼,𝛽(𝑋, 𝑌 ) = 𝑑𝑇

𝛼,𝛽(𝑌 , 𝑋). Moreover 𝜌 ≤ 1 is
necessary, so Theorem 21 gives 𝛼𝛽 ≥ 1.

Theorem 23 gives the converse to the Gragera and Suppakitpaisarn inspired Corollary 22:

Theorem 23. The Tversky dissimilarity 𝑑𝑇
𝛼,𝛽 is a metric iff 𝛼 = 𝛽 ≥ 1.

Proof. Suppose the Tversky dissimilarity 𝑑𝑇
𝛼,𝛽 is a semimetric. Let 𝑋, 𝑌 be sets with |𝑋 ∩ 𝑌 | =

|𝑋 ∖ 𝑌 | = 1 and |𝑌 ∖ 𝑋| = 0. Then

1 − 1
1 + 𝛽 = 𝑑𝑇

𝛼,𝛽(𝑌 , 𝑋) = 𝑑𝑇
𝛼,𝛽(𝑋, 𝑌 ) = 1 − 1

1 + 𝛼,

hence 𝛼 = 𝛽. Let 𝛾 = 𝛼 = 𝛽.
Now, 𝑑𝑇

𝛾,𝛾 = 𝐷𝛼0,𝛽0
where 𝛼0 = 1/2 and 𝛽0 = 2𝛾. Indeed, with �̃� = min{|𝑋 ∖ 𝑌 |, |𝑌 ∖ 𝑋|}

and �̃� = max{|𝑋 ∖ 𝑌 |, |𝑌 ∖ 𝑋|}, since

𝐷𝛼0,𝛽0
= 𝛽0

𝛼0�̃� + (1 − 𝛼0)�̃�
|𝑋 ∩ 𝑌 | + 𝛽0 [𝛼0�̃� + (1 − 𝛼0)�̃�]

,

𝐷 1
2 ,2𝛾 = 2𝛾

1
2 �̃� + (1 − 1

2 )�̃�
|𝑋 ∩ 𝑌 | + 2𝛾 [ 1

2 �̃� + (1 − 1
2 )�̃�]
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= 𝛾 |𝑋 ∖ 𝑌 | + |𝑌 ∖ 𝑋|
|𝑋 ∩ 𝑌 | + 𝛾 [|𝑋 ∖ 𝑌 | + |𝑌 ∖ 𝑋|] = 1 − |𝑋 ∩ 𝑌 |

|𝑋 ∩ 𝑌 | + 𝛾|𝑋 ∖ 𝑌 | + 𝛾|𝑌 ∖ 𝑋| = 𝑑𝑇
𝛾,𝛾.

By Theorem 20, 𝑑𝑇
𝛾,𝛾 is a metric if and only if 𝛽0 ≥ 1/(1 − 𝛼0). This is equivalent to 2𝛾 ≥ 2, i.e.,

𝛾 ≥ 1.

The truth or falsity of Theorem 23 does not arise in Gragera and Suppakitpaisarn’s work,
as they require 𝛼, 𝛽 ≤ 1 in their definition of Tversky index. We note that Tversky [18] only
required 𝛼, 𝛽 ≥ 0.

0.3 Lebesgue-style metrics
Incidentally, the names of 𝐽1 and 𝐽∞ come from the observation that they are special cases of
𝐽𝑝 given by

𝐽𝑝(𝐴, 𝐵) = (2 ⋅ |𝐵 ∖ 𝐴|𝑝 + |𝐴 ∖ 𝐵|𝑝
|𝐴|𝑝 + |𝐵|𝑝 + |𝐵 ∖ 𝐴|𝑝 + |𝐴 ∖ 𝐵|𝑝 )

1/𝑝
= {𝐽1(𝐴, 𝐵) 𝑝 = 1

𝐽∞(𝐴, 𝐵) 𝑝 → ∞
which was suggested in [9] as another possible means of interpolating between 𝐽1 and 𝐽∞. We
still conjecture that 𝐽2 is a metric, but shall not attempt to prove it here. However:
Theorem 24. 𝐽3 is not a metric.

Because of Theorem 24, we searched for a better version of 𝐽𝑝, and found 𝒱𝑝:

Definition 25. For each 1 ≤ 𝑝 ≤ ∞, let1

Δ𝑝(𝐴, 𝐵) = (|𝐵 ∖ 𝐴|𝑝 + |𝐴 ∖ 𝐵|𝑝)1/𝑝, and

𝒱𝑝(𝐴, 𝐵) = Δ𝑝(𝐴, 𝐵)
|𝐴 ∩ 𝐵| + Δ𝑝(𝐴, 𝐵) .

We have 𝒱1 = 𝐽1 and 𝒱∞ ∶= lim𝑝→∞ 𝒱𝑝 = 𝐽∞.
In a way what is going on here is that we consider 𝐿𝑝 spaces instead of

1
𝑝𝐿1 + (1 − 1

𝑝) 𝐿∞

spaces.
Theorem 26. For each 1 ≤ 𝑝 ≤ ∞, Δ𝑝 is a metric.
Theorem 27. For each 1 ≤ 𝑝 ≤ ∞, 𝒱𝑝 is a metric.
Proof. By Theorem 26 and Theorem 12, we only have to check |𝐵 ∖ 𝐴| ≤ Δ𝑝(𝐴, 𝐵), which is
immediate for 1 ≤ 𝑝 ≤ ∞.

Of special interest may be 𝒱2 as a canonical interpolant between 𝒱1, the Jaccard distance,
and 𝒱∞ = 𝐽∞, the analogue of the NID. If |𝐵 ∖ 𝐴| = 3, |𝐴 ∖ 𝐵| = 4, and |𝐴 ∩ 𝐵| = 5, then

𝒱1(𝐴, 𝐵) = 7/12,
𝒱2(𝐴, 𝐵) = 1/2,

𝒱∞(𝐴, 𝐵) = 4/9.
Note that if 𝐴 ⊆ 𝐵 then 𝒱𝑝(𝐴, 𝐵) = 𝒱1(𝐴, 𝐵) for all 𝑝.

1Here, 𝒱 can stand for Paul M. B. Vitányi, who introduced the author to the normalized information distance
at a Dagstuhl workshop in 2006.
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0.4 Conclusion and applications
Many researchers have considered metrics based on sums or maxima, but we have shown that
these need not be considered in “isolation” in the sense that they form the endpoints of a family
of metrics.

As an example, the mutations of spike glycoproteins of coronaviruses are of interest in connec-
tion with diseases such as CoViD-19. We calculated several distance measures between peptide
sequences for such proteins. The distance

𝑍2,𝛼(𝑥0, 𝑥1) = 𝛼 min(|𝐴1|, |𝐴2|) + 𝛼 max(|𝐴1|, |𝐴2|)

where 𝐴𝑖 is the set of subwords of length 2 in 𝑥𝑖 but not in 𝑥1−𝑖, counts how many subwords of
length 2 appear in one sequence and not the other.
We used the Ward linkage criterion for producing Newick trees using the hclust package for the
Go programming language. The calculated phylogenetic trees were based on the metric 𝑍2,𝛼.

We found one tree isomorphism class each for 0 ≤ 𝛼 ≤ 0.21, 0.22 ≤ 𝛼 ≤ 0.36, and 0.37 ≤ 𝛼 ≤
0.5, respectively. We see that the various intervals for 𝛼 can correspond to “better” or “worse”
agreement with other distance measures. Thus, we propose that rather than focusing on 𝛼 = 0
and 𝛼 = 1/2 exclusively, future work may consider the whole interval [0, 1/2].
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