
Automatic Complexity

Bjørn Kjos-Hanssen

December 22, 2024

This Lean project contains solutions to the exercises in the book Automatic complexity: a
computable measure of irregularity published by de Gruyter, and excerpts from the book itself.

1

Preface

As the 1968 film 2001: A Space Odyssey gave an enigmatic and scientifically accurate depiction of
space flight, so Jeffrey O. Shallit and Ming-Wei Wang’s paper Automatic complexity of strings [15]
from 2001 described what we can call a “state odyssey”: journeys through the states of a finite
automaton that held the promise of further deep exploration.

While Kolmogorov complexity is only defined “up to an additive constant”, automatic com-
plexity gives concrete values. When I start up the Complexity Guessing Game at http://math.
hawaii.edu/wordpress/bjoern/software/web/complexity-guessing-game/ on November 14,
2021, I am presented with the string 𝑥 = 011000111001010 of length 15, and asked to guess its
complexity, from 1 to 8. As we shall see in this book, in particular in Chapter 5, the best bet is
to choose the largest complexity offered (8 in this case) unless you spot something very special
about 𝑥. This is correct for our 𝑥 and next I am asked about the length 25 word

𝑦 = 1011001111101111010100101 (1)

and for a guess for its complexity, from 1 to 13. Again I choose the maximum, but in this case,
the game responds that the complexity is 12 and that there is a complexity deficiency of 1.

The idea of complexity (or randomness) deficiency comes from the study of Kolmogorov
complexity. However, automatic complexity is a more manageable (and computable) measure of
irregularity. When we say “irregularity” here it is partly a pun: automatic complexity is based
on finite automata, that accept regular languages, so irregularity indicates a failure of small finite
automata to uniquely identify the string in a sense.

This research area was started by Jeff Shallit and Ming-Wei Wang in 2001 [15]. I indepen-
dently made the same definition in 2009 while teaching the class Math 301 (Discrete Mathemat-
ics) at University of Hawai‘i. Subsequently, I have written several papers which are treated in
this book. Moreover, Jordon and Moser wrote a paper on the topic in 2021 [6]. It is my hope
that this book will stimulate further work in this area.

As a research tool, and incidentally as a method of cheating at the Complexity Guessing
Game, I have created a web service to find the complexity of a given word, and an illustration
of an automaton used in the associated proof [7].

The Complexity Option Game [8] is a variation on the same idea, inviting the player imple-
ment an exercise policy for a complexity-based financial option. These games include graphical
displays of millions of the relevant automata.

How to use this book. Chapter 1, Chapter 2, Chapter 3, and Chapter 4 answer the question
“What” by introducing the basics of state-counting and edge-counting automatic complexity.
Chapter 5 answers the question “How” (do we work with automatic complexity), answering a
question of Shallit and Wang by estimating the complexity of random words. Chapter 6 and
Chapter 7 are an attempt to answer the question “Why”. Conditional automatic complexity
gives a perspective on the length-conditional aspect of automatic complexity, and automatic

2

http://math.hawaii.edu/wordpress/bjoern/software/web/complexity-guessing-game/
http://math.hawaii.edu/wordpress/bjoern/software/web/complexity-guessing-game/

complexity turns out to give an answer to the question, what does logical depth look like in
practice.

Each chapter contains exercises, most of which come with solutions in the proof assistant
Lean. Open research problems also appear in dedicated sections.

Acknowledgments. I am grateful to many people.

• Andrew J.I. Jones, Dag Normann, Theodore A. Slaman, and many others mentored me in
computability and logic.

• In a Discrete Mathematics class in Spring 2009, students Jason Axelson, Chris Ho and
Aaron Kondo wrote a C program that calculated the complexity of all strings of length
at most 7. The dedication they put into that program fueled my interest in automatic
complexity.

• Logan Axon wrote the first Python script for automatic complexity.

• Kayleigh K. Hyde’s 2013 Master’s project and her proof of the sharp upper bound for
nondeterministic automatic complexity sparked my interest in proving theorems in this
area.

• Students who have worked with me on automatic complexity include Samuel D. Birns,
Calvin K. Bannister, Swarnalakshmi (Janani) Lakshmanan and Daylan K. Yogi.

• Jeff Shallit, Achilles Beros, Nikolai Vereshchagin, Sasha Shen, André Nies, Frank Stephan
and Angeliki Koutsoukou-Argyraki provided encouragement and interesting discussions.

This research was supported in part by a grant from Decision Research Corporation (Uni-
versity of Hawai‘i Foundation Account #129-4770-4). This work was partially supported by a
grant from the Simons Foundation (#704836 to Bjørn Kjos-Hanssen).

While I have tried to keep this book akamai, errors may occur and are my responsibility. I
would be grateful to receive reports at bjoernkh+acmoi@hawaii.edu.

Honolulu, October 2023

3

Chapter 1

First steps in automatic
complexity

The Kolmogorov complexity of a finite word 𝑤 is, roughly speaking, the length of the shortest
description 𝑤∗ of 𝑤 in a fixed formal language. The description 𝑤∗ can be thought of as an opti-
mally compressed version of 𝑤. Motivated by the non-computability of Kolmogorov complexity,
Shallit and Wang [15] studied a deterministic finite automaton analogue.

Their notion of automatic complexity is an automata-based and length-conditional analogue
of Sipser’s distinguishing complexity 𝐶𝐷 ([16], [12, Definition 7.1.4]). This was pointed out by
Mia Minnes in a review in the Bulletin of Symbolic Logic from 2012. Another precursor is the
length-conditional Kolmogorov complexity [12, Definition 2.2.2].

The automatic complexity of Shallit and Wang is the minimal number of states of an au-
tomaton accepting only a given word among its equal-length peers. Finding such an automaton
is analogous to the protein folding problem where one looks for a minimum-energy configuration.
The protein folding problem may be NP-complete [3], depending on how one formalizes it as a
mathematical problem. For automatic complexity, the computational complexity is not known,
but a certain generalization to equivalence relations gives an NP-complete decision problem [9].

In this chapter we start to develop the properties of automatic complexity.

1.1 Words
The set of all natural numbers is ℕ = {0, 1, 2, … }. Following the von Neumann convention, each
natural number 𝑛 ∈ ℕ is considered to be the set of its predecessors:

0 = ∅, 1 = {0}, and in general 𝑛 = {0, 1, … , 𝑛 − 1}.

The power set 𝒫(𝑋) of a set 𝑋 is the set of all the subsets of 𝑋:

𝒫(𝑋) = {𝐴 ∣ 𝐴 ⊆ 𝑋}.

If Σ is an alphabet (a set), a word (sometimes called string) is a sequence of elements of Σ.
For computer implementations it is often convenient to use an alphabet that is an interval

[0, 𝑏) in ℕ. When we want to emphasize that 0, 1, etc. are playing the role of symbols rather
than numbers, we often typeset them as 0, 1, etc., respectively.

4

We denote concatenation of words by 𝑥 ++ 𝑦 or by juxtaposition 𝑥𝑦. In the word 𝑤 = 𝑥𝑦𝑧,
𝑦 is called a subword or factor of 𝑤. Infinite words are denoted in boldface. For example, there
is a unique infinite word w such that w = 0w, and we write w = 0∞.

Let ⪯ denote the prefix relation, so that 𝑎 ⪯ 𝑏 iff 𝑎 is a prefix of 𝑏, iff there is a word 𝑐 such
that 𝑏 = 𝑎𝑐.

The concatenation of a word 𝑥 and a symbol 𝑎 is written 𝑥 ∶; 𝑎 if 𝑎 is appended on the right,
and 𝑎 ∶∶ 𝑥 if 𝑎 is appended on the left. It may seem most natural to define Σ∗ by induction
using 𝑥 ∶; 𝑎, at least for speakers of languages where one reads from left to right. The Lean proof
assistant [4] (version 3) uses 𝑎 ∶∶ 𝑥. That approach fits well with co-induction, if infinite words
are ordered in order type ℕ [10].

For 𝑛 ∈ ℕ, Σ𝑛 is the set of words of length 𝑛 over Σ. We may view 𝜎 ∈ Σ𝑛 is a function with
domain 𝑛 and range Σ.

We view functions 𝑓 ∶ 𝐴 → 𝐵 as subsets of the cartesian product 𝐴 × 𝐵,

𝑓 = {(𝑥, 𝑦) ∣ 𝑦 = 𝑓(𝑥)}.

The set Σ𝑛 is both the set of functions from 𝑛 to Σ and the cartesian product (Σ𝑛−1) × Σ if
𝑛 > 0. The empty word is denoted 𝜀 and the first symbol in a word 𝑥 is denoted 𝑥(0).

We can define Σ∗ = ⋃𝑛∈ℕ Σ𝑛. More properly, the set Σ∗ is defined recursively by the rule
that 𝜀 ∈ Σ∗, and whenever 𝑠 ∈ Σ∗ and 𝑎 ∈ Σ, then 𝑠 ∶; 𝑎 ∈ Σ∗. We define concatenation by
structural induction: for 𝑠, 𝑡 ∈ Σ∗,

𝑡 ++ 𝜀 = 𝑡,
𝑡 ++ (𝑠 ∶; 𝑎) = (𝑡 ++ 𝑠) ∶; 𝑎.

Definition 1. The length of a word 𝑠 ∈ Σ∗ is defined by induction:

|𝜀| = 0
|𝑠 ∶; 𝑎| = |𝑠| + 1.

If 𝐴 ⊆ 𝐵 and 𝑓 ⊆ 𝐵 × 𝐶 then 𝑓 ↾ 𝐴 = {(𝑥, 𝑦) ∈ 𝑓 ∣ 𝑥 ∈ 𝐴} is the restriction of 𝑓 to 𝐴.
The word 𝜎 is also denoted ⟨𝜎(0), 𝜎(1), … , 𝜎(|𝜎| − 1)⟩. By convention, instead of ⟨0, 1, 0⟩ we

write simply 010.

Example 2. We have

⟨0⟩ ++ ⟨1, 0⟩ = ⟨0, 1, 0⟩
= 0 ∶∶ ⟨1, 0⟩
= ⟨0, 1⟩ ∶; ⟨0⟩.

1.1.1 Occurrences and powers
In this subsection we state some results from the subject “combinatorics on words” that will be
used frequently.

The statement occurs(𝑥, 𝑘, 𝑦) that 𝑥 occurs in position 𝑘 within 𝑦 may be defined by induction
on 𝑛:

occurs(𝑥, 0, 𝑦) ⟺ ∃𝑧, 𝑥 ++ 𝑧 = 𝑦,
occurs(𝑥, 𝑛 + 1, 𝑦) ⟺ ∃𝑎 ∈ Σ, occurs(𝑎 ∶∶ 𝑥, 𝑛, 𝑦).

5

Example 3. We have occurs(na, 2, banana) and occurs(na, 4, banana).
The number of occurrences can be defined, without defining a notion of “occurrence”, as the

cardinality of {𝑘 ∈ ℕ ∶ occurs(𝑥, 𝑘, 𝑦)}. To define disjoint occurrences, so we should have a notion
of “occurrence”.

Definition 4. Two occurrences of words 𝑎 (starting at position 𝑖) and 𝑏 (starting at position 𝑗)
in a word 𝑥 are disjoint if 𝑥 = 𝑢𝑎𝑣𝑏𝑤 where 𝑢, 𝑣, 𝑤 are words and |𝑢| = 𝑖, |𝑢𝑎𝑣| = 𝑗.

Type-theoretically [2] we may say that an occurrence of 𝑥 in 𝑦 is a pair (𝑘, ℎ) where ℎ is a
proof that occurs(𝑥, 𝑘, 𝑦). Of course, we could also say that the occurrence is simply the number
𝑘, or even the triple (𝑥, 𝑘, 𝑦) but in that case the object does not have its defining property
within it, so to speak: the number 𝑘, and the triple (𝑥, 𝑘, 𝑦), exist even when 𝑥 does not occur
at position 𝑘 in 𝑦.

To naturally speak of disjoint occurrences we make Definition 5. Note that we primarily use
zero-based words in this book, i.e., other things being equal we prefer to call the first letter of a
word 𝑥0, rather than 𝑥1.

Definition 5. A word 𝑥 = 𝑥0 … 𝑥𝑛−1, or an infinite word 𝑥 = 𝑥0𝑥1 … , with each 𝑥𝑖 ∈ Σ, is
viewed as a function 𝑓𝑥 ∶ 𝑛 → Σ with 𝑓𝑥(𝑖) = 𝑥𝑖. An occurrence of 𝑦 = 𝑦0 … 𝑦𝑚−1 in 𝑥 is a
function 𝑓𝑥 ↾ [𝑎, 𝑎 + 𝑚 − 1] such that 𝑓𝑥(𝑎 + 𝑖) = 𝑦𝑖 for each 0 ≤ 𝑖 < 𝑚.

For 𝑎, 𝑏 ∈ ℕ, let [𝑎, 𝑏] = {𝑥 ∈ ℕ ∣ 𝑎 ≤ 𝑥 ≤ 𝑏}. Two occurrences 𝑓𝑥 ↾ [𝑎, 𝑏], 𝑓𝑥 ↾ [𝑐, 𝑑] are
disjoint if [𝑎, 𝑏] ∩ [𝑐, 𝑑] = ∅.

If moreover [𝑎, 𝑏 + 1] ∩ [𝑐, 𝑑] = ∅ then the occurrences are strongly disjoint.
A subword that occurs at least twice in a word 𝑤 is a repeated subword of 𝑤. Let 𝑘 ∈ ℕ,

𝑘 ≥ 1. A word 𝑥 = 𝑥0 … 𝑥𝑛−1, 𝑥𝑖 ∈ Σ, is 𝑘-rainbow if it has no repeated subword of length 𝑘:
there are no 0 ≤ 𝑖 < 𝑗 < 𝑛 − 𝑘 with 𝑥 ↾ [𝑖, 𝑖 + 𝑘 − 1] = 𝑥 ↾ [𝑗, 𝑗 + 𝑘 − 1]. A 1-rainbow word is also
known simply as rainbow.

In particular, the empty word 𝜀 occurs everywhere in every word. However, each word has
exactly one occurrence of 𝜀, since all empty functions are considered to be equal (in set theory,
at any rate).

Having properly defined “occurrence” in Definition 5, we can state and prove the trivial
Lemma 6.

Lemma 6. Suppose 𝑛, 𝑡 are positive integers with 𝑡 ≤ 𝑛 + 1. A word of length 𝑛 has 𝑛 + 1 − 𝑡
occurrences of subwords of length 𝑡.
Proof. Let 𝑥 be a word of length 𝑛. The occurrences of subwords of length 𝑡 are

𝑓𝑥 ↾ [0, 𝑡 − 1], 𝑓𝑥 ↾ [1, 𝑡], … , 𝑓𝑥 ↾ [𝑛 − 𝑡, 𝑛 − 𝑡 + (𝑡 − 1)].

Theorem 7. Let 𝑘, 𝑡 ∈ ℕ with 𝑘 ≥ 1. In an alphabet of cardinality 𝑘, a 𝑡-rainbow word has
length at most 𝑘𝑡 + 𝑡 − 1.

Proof. There are 𝑘𝑡 words of length 𝑡. Thus, by Lemma 6, for a 𝑡-rainbow word of length 𝑛 we
have 𝑛 + 1 − 𝑡 ≤ 𝑘𝑡.

Theorem 7 has a converse, Theorem 9. To prove it we shall require the notion of a de Bruijn
word.

6

Definition 8. A de Bruijn word of order 𝑛 over an alphabet Σ is a sequence 𝑦 such that every
𝑥 ∈ Σ𝑛 occurs exactly once as a cyclic substring of 𝑦.

Theorem 9. Let 𝑘, 𝑡 ∈ ℕ with 𝑘 ≥ 1. In an alphabet of cardinality 𝑘, there exists a 𝑡-rainbow
word of length 𝑘𝑡 + 𝑡 − 1.

Proof. Case 𝑡 = 0: indeed, the empty word is a 0-rainbow word of length 0. Case 𝑡 = 1: A
1-rainbow word of length 𝑘 exists, namely any permutation of the symbols in Σ (Definition 5).
For 𝑡 > 1, let 𝑥 be a de Bruijn word 𝐵(𝑘, 𝑡) of length 𝑘𝑡 and let 𝑤 = 𝑥2 ↾ (𝑘𝑡 + 𝑡 − 1).
Definition 10. Let 𝛼 be a word of length 𝑛, and let 𝛼𝑖 be the 𝑖th letter of 𝛼 for 1 ≤ 𝑖 ≤ 𝑛. We
define the 𝑢th power of 𝛼 for certain values of 𝑢 ∈ ℚ≥0 (the set of nonnegative rational numbers)
as follows. For 𝑢 ∈ ℕ:

𝛼0 = 𝜀,
𝛼𝑛+1 = 𝛼𝑛 ++ 𝛼.

• If 𝑢 = 𝑣 + 𝑘/𝑛 where 0 < 𝑘 < 𝑛, and 𝑘 is an integer, then 𝛼𝑢 denotes 𝛼𝑣𝛼1 … 𝛼𝑘 and is
called a 𝑢-power.

The word 𝑤 is 𝑢-power-free if no nonempty 𝑣-power, 𝑣 ≥ 𝑢, occurs (Definition 5) in 𝑤. In
particular, 2-power-free is called square-free and 3-power-free is called cube-free. Let w be an
infinite word over the alphabet Σ, and let 𝑥 be a finite word over Σ. Let 𝑢 > 0 be a rational
number. The word 𝑥 is said to occur in w with exponent 𝑢 if 𝑥𝑢 occurs in w (Definition 5).

The reader may note that the definition of 𝑢-power-free is perhaps not obvious. For example,
the word 𝑎𝑏𝑎 is not 1.49-power-free: while it contains no 1.49-power, it contains a 1.5-power.
This way of defining things enables Theorem 12 and goes back at least to Krieger [11, page 71].

Definition 11. The critical exponent ce(𝑤) of an infinite word w is defined by

ce(𝑤) = sup{𝛼 ∈ ℚ ∣ w contains some 𝛼-power}.

Theorem 12 (Krieger [11]). The critical exponent of w is equal to

inf{𝛼 ∈ ℚ ∣ w is 𝛼-power-free}.

Proof. Let

𝑆 = {𝛼 ∈ ℚ ∣ w is 𝛼-power-free},
𝑇 = {𝛼 ∈ ℚ ∣ w contains some 𝛼-power}.

Paying careful attention to Definition 10, the word w is 𝛼-power-free iff for all 𝛽 ≥ 𝛼, w contains
no 𝛽-power. Therefore, 𝑆 is upward closed. On the other hand, 𝑇 is an upward dense subset of
the complement of 𝑆. Therefore, ce(𝑤) = sup 𝑇 = inf 𝑆.

As an example of Definition 10, we have 01103/2 = 011001. Note that the expected Power
Rule for Exponents fails for word exponentiation. In general, (𝑥𝑎)𝑏 ≠ 𝑥𝑎𝑏, for instance

(01)3 = 010101 ≠ 010010 = ((01)3/2)2.

Fix an alphabet Σ, and let Σ+ denote the set of nonempty words over Σ.

7

Lemma 13 (Lyndon and Schützenberger [13]; see [14, Theorem 2.3.2]). Let 𝑐, 𝑑, 𝑒 ∈ Σ+. The
equation 𝑐𝑑 = 𝑑𝑒 holds iff there exist a nonempty word 𝑢, a word 𝑣, and a natural number 𝑝 such
that 𝑐 = 𝑢𝑣, 𝑑 = (𝑢𝑣)𝑝𝑢, and 𝑒 = 𝑣𝑢.

Theorem 14 (Lyndon and Schützenberger [13]; see[14, Theorem 2.3.3]). Let 𝑥, 𝑦 ∈ Σ+. Then
the following four conditions are equivalent:

1. 𝑥𝑦 = 𝑦𝑥.

2. There exists 𝑧 ∈ Σ and integers 𝑘, 𝑙 > 0 such that 𝑥 = 𝑧𝑘 and 𝑦 = 𝑧𝑙.

3. There exist integers 𝑖, 𝑗 > 0 such that 𝑥𝑖 = 𝑦𝑗.

8

Chapter 2

Nondeterminism and overlap-free
words

In this chapter we develop some properties of nondeterministic automatic complexity. As a corol-
lary we get a strengthening of a result of Shallit and Wang [15] on the complexity of the infinite
Thue–Morse word t. Moreover, viewed through an NFA lens we can, in a sense, characterize
the complexity of t exactly. A main technical idea is to extend the following result, which says
that not only do squares, cubes and higher powers of a word have low complexity, but a word
completely free of such powers must conversely have high complexity.

9

Chapter 3

Edge complexity and digraphs

3.1 Edge-counting automatic complexity

10

Chapter 4

The many variants

4.1 Master diagram

11

Chapter 5

The incompressibility theorem

Shallit and Wang showed that the automatic complexity 𝐴(𝑥) satisfies 𝐴(𝑥) ≥ 𝑛/13 for almost
all 𝑥 ∈ {0, 1}𝑛. They also stated that Holger Petersen had informed them that the constant 13
can be reduced to 7. Here we show that it can be reduced to 2 + 𝜖 for any 𝜖 > 0. The result
also applies to nondeterministic automatic complexity 𝐴𝑁(𝑥). In that setting the result is tight
inasmuch as 𝐴𝑁(𝑥) ≤ 𝑛/2 + 1 for all 𝑥.

12

Chapter 6

Conditional automatic complexity

In this chapter we show that metrics analogous to the Jaccard distance and the Normalized
Information Distance can be defined based on conditional nondeterministic automatic complexity
𝐴𝑁 . Our work continues the path of Shannon (1950) on entropy metrics and Gács (1974) on
symmetry of information among others.

Shallit and Wang (2001) defined the automatic complexity of a word 𝑤 as, somewhat roughly
speaking, the minimum number of states of a finite automaton that accepts 𝑤 and no other word
of length |𝑤|. This definition may sound a bit artificial, as it is not clear the length of 𝑤 is
involved in defining the complexity of 𝑤. In this chapter we shall see how conditional automatic
complexity neatly resolves this issue.

6.1 Basics

13

Chapter 7

Logical depth and automatic
complexity

7.1 Introduction
Logical depth was defined by Chaitin in 1977 [1] and further studied by Bennett in 1986. It
is essentially the time it takes to verify a witness of Kolmogorov complexity. We demonstrate
that for automatic complexity, logical depth arises as the difficulty of determining the unique
solvability of certain knapsack problems.

A word is deep not so much if it has no simple description but rather if its simplest description
is hard to understand and verify. For example, the task of finding the factorization

2001 = 3 × 23 × 29

is laborious to find, but relatively simple to verify. In that sense, it is not deep. In this chapter
we uncover a quite concrete instance of this idea of logical depth. To do so we replace Turing
machines by finite automata. In the case of infinite sequences, finite-state depth has been studied
by Jordon and Moser [5], but we focus on the concrete world of finite words.

We replace Kolmogorov complexity with automatic complexity. The automatic complexity
𝐴(𝑤) of a word 𝑤 was studied by Shallit and Wang (2001) [15]. It is the minimum number of
states of a DFA with certain properties and can be defined in a couple of in-equivalent variants.

Now, an NFA with a minimum number of edges accepting the word 𝑤 and no other word
of the same length must of course contain a walk on which 𝑤 is accepted that visits every edge
of 𝑀 . It is thus natural to require 𝑤 to be the only word of length |𝑤| accepted by 𝑀 on an
edge-covering walk, thus obtaining the edge-covering complexity 𝐸𝑁𝑐(𝑤).

14

Bibliography

[1] G. J. Chaitin. Algorithmic information theory. IBM Journal of Research and Development,
21(4):350–359, 1977.

[2] Thierry Coquand and Gérard Huet. The calculus of constructions. Inform. and Comput.,
76(2-3):95–120, 1988.

[3] Pierluigi Crescenzi, Deborah Goldman, Christos Papadimitriou, Antonio Piccolboni, and
Mihalis Yannakakis. On the complexity of protein folding. Journal of Computational Biology
: a journal of computational molecular cell biology, 5:423–65, 02 1998.

[4] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob
von Raumer. The Lean Theorem Prover (System Description). In Amy P. Felty and Aart
Middeldorp, editors, CADE, volume 9195 of Lecture Notes in Computer Science, pages
378–388. Springer, 2015.

[5] Liam Jordon and Philippe Moser. On the difference between finite-state and pushdown
depth. In SOFSEM 2020: theory and practice of computer science, volume 12011 of Lecture
Notes in Comput. Sci., pages 187–198. Springer, Cham, [2020] ©2020.

[6] Liam Jordon and Philippe Moser. Normal sequences with non-maximal automatic complex-
ity. In Mikolaj Bojanczyk and Chandra Chekuri, editors, 41st IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2021,
December 15-17, 2021, Virtual Conference, volume 213 of LIPIcs, pages 47:1–47:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[7] Bjørn Kjos-Hanssen. Complexity lookup. http://math.hawaii.edu/wordpress/bjoern/
complexity-of-0110100110010110/.

[8] Bjørn Kjos-Hanssen. Complexity option game. http://math.hawaii.edu/wordpress/
bjoern/complexity-option-game/.

[9] Bjørn Kjos-Hanssen. On the complexity of automatic complexity. Theory Comput. Syst.,
61(4):1427–1439, 2017.

[10] Dexter Kozen and Alexandra Silva. Practical coinduction. Math. Structures Comput. Sci.,
27(7):1132–1152, 2017.

[11] Dalia Krieger. On critical exponents in fixed points of non-erasing morphisms. Theoret.
Comput. Sci., 376(1-2):70–88, 2007.

[12] Ming Li and Paul Vitányi. An introduction to Kolmogorov complexity and its applications.
Graduate Texts in Computer Science. Springer-Verlag, New York, second edition, 1997.

15

http://math.hawaii.edu/wordpress/bjoern/complexity-of-0110100110010110/
http://math.hawaii.edu/wordpress/bjoern/complexity-of-0110100110010110/
http://math.hawaii.edu/wordpress/bjoern/complexity-option-game/
http://math.hawaii.edu/wordpress/bjoern/complexity-option-game/

[13] R. C. Lyndon and M. P. Schützenberger. The equation 𝑎𝑀 = 𝑏𝑁𝑐𝑃 in a free group. Michigan
Math. J., 9:289–298, 1962.

[14] Jeffrey Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge
University Press, New York, NY, USA, 1 edition, 2008.

[15] Jeffrey Shallit and Ming-Wei Wang. Automatic complexity of strings. J. Autom. Lang.
Comb., 6(4):537–554, 2001. 2nd Workshop on Descriptional Complexity of Automata, Gram-
mars and Related Structures (London, ON, 2000).

[16] Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the
Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pages 330–335,
New York, NY, USA, 1983. ACM.

16

	First steps in automatic complexity
	Words
	Occurrences and powers

	Nondeterminism and overlap-free words
	Edge complexity and digraphs
	Edge-counting automatic complexity

	The many variants
	Master diagram

	The incompressibility theorem
	Conditional automatic complexity
	Basics

	Logical depth and automatic complexity
	Introduction

